
BERKELEY PAR LAB BERKELEY PAR LAB

Steps Towards Heterogeneity and the
UC Berkeley Parallel Computing Lab

Krste Asanović, Ras Bodik, Eric Brewer,
Jim Demmel, Armando Fox,
Tony Keaveny, Kurt Keutzer,

John Kubiatowicz, Nelson Morgan,
Dave Patterson, Koushik Sen,

David Wessel, and Kathy Yelick
UC Berkeley Par Lab

June, 2011

BERKELEY PAR LAB

Power is the Problem

Given limited power budget and slowly improving
transistors, how can we continue increase
performance enabled by Moore’s Law?
 “This shift toward increasing parallelism is not a triumphant stride

forward based on breakthroughs in novel software and
architectures for parallelism; instead, this plunge into parallelism is
actually a retreat from even greater challenges that thwart efficient
silicon implementation of traditional uniprocessor architectures.”*

 Same motivation for transition from homogenous multicore
to heterogeneous multicore

 Lower energy at same performance as interesting as more
performance?

 Do multicore advances make heterogeneity feasible?

2

*The Landscape of Parallel Computing Research: A View From Berkeley, Dec 2006

BERKELEY PAR LAB
What next?

 Future advancements in energy/op needs more
than just parallelism

 Voltage-Frequency scaling of limited benefit in
future technologies
 Not much difference between Vdd and Vt

Move to simpler general-purpose cores is a
one-time gain
 In smart phones, cores were already relatively

simple
More transistors per die than we can power at

the same time (“Utilization Wall ”)

3

BERKELEY PAR LAB

Efficiency versus Generality

4

1

10

100

1000

Performance/Energy
Efficiency relative to GPP

Application coverage
All 1

Fixed-
function

How many interesting
opportunities in this gap?
Can you program them?

General
Purpose

Proc.

BERKELEY PAR LAB

Outline

Why Heterogeneity?

Quick Summary of Some Par Lab Advances

 Berkeley Hunch on Heterogeneity

5

BERKELEY PAR LAB

Par Lab Timeline

6

Initial
Meetings

“Berkeley View”
Tech Report

Win Intel/Microsoft
UPCRC Competition

UPCRC
Phase-I

UPCRC
Phase-II

You are here

Hetero-
geneity?

BERKELEY PAR LAB

7

Dominant Application
Platforms

7

 Laptop/Handheld (“Mobile Client”)
 Par Lab focuses on mobile clients

 Data Center or Cloud (“Cloud”)
 RAD Lab/AMP Lab focuses on Cloud

 Both together (“Client+Cloud”)
 ParLab-AMPLab collaborations

BERKELEY PAR LAB

Par Lab’s original “bets”

Let compelling applications drive research
agenda

Software platform: data center + mobile client
Identify common programming patterns
Productivity versus efficiency programmers
Autotuning and software synthesis
Build-in correctness + power/performance diagnostics
OS/Architecture support applications, provide flexible

primitives not pre-packaged solutions
FPGA simulation of new parallel architectures: RAMP
Co-located integrated collaborative center

Above all, no preconceived big idea
- see what works driven by application needs.

 8 8

BERKELEY PAR LAB

“Post Conceived” Big Ideas

Communication-Avoiding Algorithms
 Large speedup of highly-polished algorithms by

concentrating on data movement vs. FLOPs
 Structural Patterns for Parallel Composition
 Good software architecture vs. invent new lang

 Selective Embedded Just-In-Time Specialization
(SEJITS)
 Productivity of Python with Efficiency of C++

Higher-level Hardware Description Lang (Chisel)
 More rapidly explore HW design space

 Theme: Specialized HW requires Specialized SW
 9

BERKELEY PAR LAB

Communication-Avoiding Algorithms
(Demmel, Yelick, Keutzer)

 Past algorithms: FLOPs expensive, Moves cheap
 From architects, numerical analysts interacting,

learn that now Moves expensive, FLOPs cheap
New theoretical lower bound of moves to FLOPs
 Success of theory and practice: real code now

achieves lower bound of moves to great results
 Even Dense Matrix: >10X speedup over Intel MKL

Multicore Nehalem and >10X speedup over GPU
libraries for tall-skinny matrices (IPDPS 2011)

 Widely applicable: all linear algebra, Health
app…

10

BERKELEY PAR LAB

Types of Programming
(or “types of programmer”)

Hardware/OS

Efficiency-Level
(MS in CS) C/C++/FORTRAN

assembler

Java/C# Uses hardware/OS
primitives, builds
programming
frameworks (or apps)

Productivity-Level
(Some CS courses)

Python/Ruby/Lua

Scala

Uses programming
frameworks, writes
application
frameworks (or apps)

Haskell/OCamL/F#

Domain-Level
(No formal CS)

Max/MSP, SQL,
CSS/Flash/Silverlight,
Matlab, Excel

Builds app with DSL
and/or by customizing
app framework

Provides hardware
primitives and OS services

Example Languages Example Activities

11 11

BERKELEY PAR LAB

How to make parallelism visible?

 In a new general-purpose parallel language?
 An oxymoron?
 Won’t get adopted
 Most big applications written in >1 language

 Par Lab is betting on Computational and
Structural Patterns at all levels of
programming (Domain thru Efficiency)
 Patterns provide a good vocabulary for domain experts
 Also comprehensible to efficiency-level experts or

hardware architects
 Lingua franca between the different levels in Par Lab

12 12

BERKELEY PAR LAB

13

How do compelling apps relate to 12 motifs?

 Motif (nee “Dwarf”) Popularity
 (Red Hot  Blue Cool)

BERKELEY PAR LAB

14

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-
Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Concurrent Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing
Collective-Comm.

Thread-Pool
Task-Graph

Data structure Program structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)

Loop-Par.
Task-Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

“Our” Pattern Language (OPL-2010)
(Kurt Keutzer, Tim Mattson)

A = M x V

Refine Towards
Implementation

BERKELEY PAR LAB

Mapping Patterns to Hardware

App 1 App 2 App 3

Dense Sparse Graph Trav.

Multicore GPU “Cloud”

Only a few types of hardware platform

15

BERKELEY PAR LAB

High-level pattern constrains space
of reasonable low-level mappings

(Insert latest OPL chart showing path)

16

BERKELEY PAR LAB

Specializers: Pattern-specific and
platform-specific compilers

Multicore GPU “Cloud”

App 1 App 2 App 3

Dense Sparse Graph Trav.

Allow maximum efficiency and expressibility in
specializers by avoiding mandatory intermediary layers

17

aka. “Stovepipes”

(Note: Potentially good match to heterogeneity too)

BERKELEY PAR LAB

18

Autotuning for Code Generation
(Demmel, Yelick)

Search space for
block sizes
(dense matrix):
• Axes are block
 dimensions
• Temperature is
 speed

 Problem: generating optimized code is like searching for
needle in haystack; use computers rather than humans

Auto-tuning

Auto-
parallelization

serial
reference

OpenMP
Comparison

Auto-NUMA

 Auto-tuners approach: program
generates optimized code and
data structures for a “motif”
(~kernel) mapped to some
instance of a family of
architectures (e.g., x86 multicore)

 Use empirical measurement to
select best performing

 ParLab autotuners for stencils,
sparse matrices, particle/mesh

 ML to reduce search space?
 (Note: Good for Heterogeneity?)

18

BERKELEY PAR LAB

SEJITS: “Selective, Embedded,
Just-In Time Specialization” (Fox)

  SEJITS bridges productivity and efficiency layers through
specializers embedded in modern high-level productivity
language (Python, Ruby)
 Embedded “specializers” use language facilities to map

high-level pattern to efficient low-level code (at run time,
install time, or development time)

 Specializers can incorporate/package autotuners
Two ParLab SEJITS projects:
 Copperhead: Data-parallel subset of Python targeting GPUs
 Asp: “Asp is SEJITS in Python” general specializer

framework
 Provide functionality common across different specializers

 (Note: SEJITS helpful for Heterogeneity too?)
 19

BERKELEY PAR LAB

Tessellation OS: Space-Time Partitioning
+ 2-Level Scheduling (Kubiatowicz)

1st level: OS determines
coarse-grain allocation of
resources to jobs over space
and time

2nd level: Application schedules
component tasks onto
available “harts” (hardware
thread contexts) using Lithe

Time
Sp

ac
e

2nd-level
Scheduling

Address Space
A

Address Space
B Task

Tessellation Kernel
(Partition Support)

CPU
L1

L2
Bank

DRAM

DRAM & I/O Interconnect

L1 Interconnect

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM

CPU
L1

L2
Bank

DRAM
20

BERKELEY PAR LAB

Adaptive Resource
Management

Resource allocation is about
adapt/model/observe loop

 Pacora: using convex optimization as an instance
to adapt to changing circumstances

 Each process receives a vector of basic
resources dedicated to it
 fractions of cores, cache slices, memory pages, BW

 Allocate minimum for QoS requirements
 Allocate remaining to meet system-level objective
 best performance, lowest energy, best user experience

21

BERKELEY PAR LAB

Resource Management using
Convex Optimization (Bird, Smith)

 La = RUa(r(0,a), r(1,a), …, r(n-1,a)) La

Pa(La)

Continuously
Minimize

(subject to restrictions
on the total amount of

resources)

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b))
 Lb

Pb(Lb)

Penalty Function
Reflects the app’s

importance

Convex Surface
Performance Metric (L), e.g., latency

Resource Utility Function
Performance as function of

resources

QoS Req.

 (Note: Dynamic Resource Management
Optimization needed for Heterogeneity too)

BERKELEY PAR LAB

Chisel: Hardware Design Language
(Asanović, Bachrach)

Chisel (Constructing Hardware in a Scala
Embedded Language) under active development
 Generate C simulator + FPGA emulation +

ASIC synthesis from one RTL description
 Supports higher-level libraries

Chisel compiles C-simulation of RTL RISC-V
processor design in 12 seconds, runs at 4.5MHz
on 3.2GHz Nehalem
 FPGA tools take >1 hour to map same

design, runs at 33MHz on FPGA.
(Note: Helps for Heterogeneous HW too)

23

BERKELEY PAR LAB

Theme: Specialized HW
requires Specialized SW

 Patterns specialize general-purpose
programming by giving programming constructs
that are specialized for the 12 patterns

 Programmer composes functionality at high-
level using productivity language

 Specializers are tools that specialize the generic
compiler for each of the 12 patterns
 A stovepipe specializes the general-purpose

language+compiler combination into a
pattern+specializer combination

 System composes resource usage using 2-level
scheduling: Tessellation OS + Lithe at user-level

24

BERKELEY PAR LAB

Theme: Specialized HW
requires Specialized SW

25

High-Level
Description

Output Name of Tool

Software in Our
Pattern Language
(OPL)

Software Architecture
using Structural
Patterns in
ASP/Copperhead

ASP/Copperhead
Compiler
(DSLs embedded in
Python)

Hardware in Berkeley
Hardware Pattern
Language (BHPL)

C++ simulator, FPGA
bits, Synthesizable
Verilog

Chisel Compiler (DSL
embedded in Scala)

MUD/Ale programs Parallel Layout Engine

MUD/Ale compiler

Berkeley Bet: Pattern-specific high-level programs
can be automatically and dynamically specialized
to pattern-specific hardware

BERKELEY PAR LAB

Par Lab Apps
What are the compelling future workloads?

oNeed apps of future vs. legacy to drive agenda
o Improve research even if not the real killer apps

Music: 3D Enhancer, Hearing Aid, Novel UI
 Parallel Browser: Layout, Scripting Language
Computer Vision: Segment-Based Object

Recognition, Poselet-Based Human Detection
Health: MRI Reconstruction, Stroke Simulation
 Speech: Automatic Meeting Diary

26

BERKELEY PAR LAB

Vision Acceleration
(Kurt Keutzer)

 Parallelizing Computer Vision
(image segmentation)

 Problem: Malik’s highest quality algorithm
was 5.5 minutes / image on new PC

 Good SW architecture + talk within Par Lab
 on to use new algorithms, data structures
 Current result: 1.8 seconds / image on manycore

 ~ 150X speedup
 Factor of 10 quantitative change is a qualitative change

 Enabled propagation of best in class algorithm

27

BERKELEY PAR LAB

Fast Pediatric MRI
(Kurt Keutzer)

28

 Pediatric MRI is difficult
 Children cannot keep still or hold breath
 Low tolerance for long exams
 Must put children under anesthesia:

risky & costly

 Need techniques to accelerate MRI
acquisition (sample & multiple sensors)

 Reconstruction must also be fast, or time
saved in acquisition is lost in compute

 Current reconstruction time: 2 hours
 Non-starter for clinical use
 Mark Murphy (Par Lab) reconstruction: 1 minute on manycore
 Fast enough for radiologist to make critical decisions
 Dr. Shreyas Vasanawala (Lucille Packard Children's
 Hospital) put into use 2010 for further clinical study

BERKELEY PAR LAB

29

BERKELEY PAR LAB

Speech: Meeting Diarist
(Nelson Morgan, Gerald Friedland, ICSI/UCB)

 Laptops/ Handhelds at meeting coordinate to create speaker
identified, partially transcribed text diary of meeting

Won
ACM
Multimedia
Grand
Challenge
2009

BERKELEY PAR LAB

Parallelization of Diarization
 Five versions (so far):
1. Initial code (2006): 0.333 x realtime

(i.e., 1 hour audio = 3 hours processing)
2. Serially optimized (2008): 1.5 x realtime
3. Parlab retreat summer 2010: Multicore+GPU

parallelization: 14.3 x realtime
4. Parlab retreat winter 2011: GPU-only

parallelization 250 x realtime
(i.e., 1 hour audio = 14.4 sec processing)
-> Offline = online!

5. Parlab retreat June 2011: SEJITized! [1]
 [1] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with Python-

level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011.

BERKELEY PAR LAB

Speaker Diarization in Python

Python: 45 LOC C

…..

15x LOC
reduction

BERKELEY PAR LAB

Results – Specializer Overhead

 15x reduction in lines of code (Python vs.
C/Cuda)

 Python AHC code is within 1.25x of pure C/CUDA
implementation performance
 C/CUDA – 250x realtime on GPU
 SEJITized AHC – 200x realtime on GPU

 Time lost in:
 Data copying overhead from CPU to GPU
 Outer loop and GMM creation in Python
 GMM scoring in Python

 Initial retarget to Cilk++ – ~ 100x realtime on
Nehalem Multicore

BERKELEY PAR LAB

Outline

Why Heterogeneity?

Quick Summary of Some Par Lab Advances

 Berkeley Hunch on Heterogeneity

33

BERKELEY PAR LAB

Earlier Successful Examples:
FPUs, Vector Units

 FPUs are specialized hardware
 Only useful for floating-point code
 Easy for programmers to use because

already had programming model
 Needed some tuning to use effectively

 Vector units are specialized hardware
 Only useful for data-parallel code
 Easy for programmers to use, already had

loop nests in application code
 Needed some tuning to use effectively, but

had compiler feedback

34

BERKELEY PAR LAB

The Opportunity

35

 Intel researchers picked 14 throughput oriented
kernels to benchmark multicore vs. GPU
 Lee et al “Debunking the 100X GPU vs. CPU myth:

an evaluation of throughput computing on CPU and
GPU,” ISCA June 2010.

Collision Detection Application ran 15.2X faster
on NVIDIA GPU vs. Intel Nehalem due to

1. GPU Gather-Scatter addressing
2. More GPU hardware for transcendental

functions

BERKELEY PAR LAB

The Opportunity

 Example of H.264 video decoder [Hameed et al, ISCA 2010]
 Highly tuned software H.264 decoder vs. fixed-function ASIC
 Normalized to 130nm technology

36

Area
(mm2)

Frames/
Second

Joules/F
rame

Pentium-4 (720x480) 122 30 0.742

Pentium-4 (1280x720) 122 11 2.023

ASIC (1280x720) 8 30 0.004

 45X throughput/area advantage
 (3x frame rate, 15x less area)

 500X energy/task advantage

BERKELEY PAR LAB
Heterogeneity?

Much agreement that heterogeneity comes next
 But many different views on what heterogeneity

means

37

BERKELEY PAR LAB

Heterogeneity Research

 Large design space
 Lots of earlier work
 many failures (e.g., NeXT DSP, IBM Cell,

reconfigurable computing)
 few successes (e.g., GP-GPU)

Used in niche applications now, but looks
inevitable for widespread hardware adoption

How can software keep up?
Much confusion in industry

 Sound familiar? => Berkeley View on …

38

BERKELEY PAR LAB

Specialization >> Heterogeneity
Do not need heterogeneity to benefit from

specialization
Heterogeneity is one way to deliver specialization
 Alternative approaches:
 Homogeneous cores with wide variety of

coprocessors/extended instruction sets
 Homogeneous reconfigurable cores

Can use all of the above in one system

Research question: When does core heterogeneity
make sense versus richer homogeneous cores?

39

BERKELEY PAR LAB

Berkeley Bet: Focus on problem on one die

Structure of Heterogeneity

How are heterogeneous components arranged?
 Temporal heterogeneity
 One core changes over time (voltage, frequency, runtime

configurable)
 Spatial heterogeneity
 Hetero. computers in datacenter (Niagara + Sandy Bridge)
 Hetero. nodes in single address space (Cray XT6 nodes)
 Hetero. nodes on one motherboard (CPU + discrete GPU)
 Hetero. nodes on one chip (SoC CPU+DSP+GPU)
 Hetero. coprocessors (Vector Units, Conservation Cores)
 Hetero. functional units (AES instructions)

40

BERKELEY PAR LAB

Types of Specialization

Less specialized
 Same core design, different VF operating points
 Same core design, runtime configurable

components
 Same ISA, different µarchitectures
 Variants of same ISA (subsets, different extensions)
Completely different ISAs
 Programmable logic (no ISA)
 Fixed-function accelerators (no programming)
More specialized

BERKELEY PAR LAB

Berkeley Bet: Useful tool, can be used with any
architecture to trade performance and energy/op,
but benefit decreasing with shrinking transistors

Operating-Point Specialization

One core operates at different Voltage/Frequency
over time (temporal specialization)

Multiple cores experience different
Voltage/Frequency at same time (spatial
specialization)

Where to manage?
 Purely in hardware power management unit (PMU)?
 In OS?
 With application help?

BERKELEY PAR LAB

Specialization through Runtime
Configuration

One ISA, one microarch, but provide runtime configurable
components

 Issue width
 Reduce active issue width to match ILP

 Cache capacity
 activate fewer ways if small working set
 can also reduce number of sets

 Turn attached units on and off
 Floating-point units
 SIMD engines
 Attached coprocessors

 Prefetchers, how aggressive, what patterns to prefetch
 Multithreading, number of active threads

BERKELEY PAR LAB

Specialized µArchitectures

One ISA, different µarchitectures
“Fat” out-of-order vs. “Thin” in-order
Lightly threaded (1-2) vs. heavily threaded

(4-128)
Wide SIMD (256+bits) vs. Narrow SIMD

(<= 64bits)
Few pipestages (latency critical) vs. many

pipestages (throughput-centric)
Note: some ISAs better than others to get

large dynamic range

BERKELEY PAR LAB

ISA Specialization

 ISA extensions
 E.g., crypto operations (+instructions)

Slave units
 E.g., vector units (+state, + instructions)

Autonomous Coprocessors
 E.g. conservation cores (+state, +instructions,

+ control)

BERKELEY PAR LAB

Berkeley Bet: Where there is an ISA, can usually
use same base ISA, but ISA not where action is

Multiple Different ISAs

CPU vs. GPU vs. DSP vs. …
 Implies heterogeneous cores
Probably different programming models
Any technical reason this is needed

(above µarch specialization or different
ISA extensions) or just business/IP ?

46

BERKELEY PAR LAB

Programmable Logic

 FPGAs
 Programmable logic coprocessors
 GARP, Stretch, Convey

 Successful at accelerating some kinds of

compute in niche areas

 Programming productivity has been a challenge.

47

BERKELEY PAR LAB

Fixed-Function Accelerators

Avoid instruction stream overhead by
building fixed-function hardware
 E.g., crypto engine

Not programmable, but maybe
parameterizable

Very high efficiency for one kernel
Software accesses through API calls

48

Berkeley Bet: Important component of all future
systems, but not a focus of our research effort

BERKELEY PAR LAB

End of RISC?

If have 10 specialized cores
each aimed at 10% of
workload, then ISAs likely to
grow?

49

BERKELEY PAR LAB

Berkeley Bet: At least as important as
specialized cores

Specialized Memory and
Interconnect too

Coherence protocols
Software-managed memory
Synchronization primitives
On-the-fly compression/decompression
Easier to make configurable, since

switching and translation/virtualization
already part of the design

50

BERKELEY PAR LAB

Software Challenges

Can the benefit of hardware specialization be
widely obtained for third-party application
developers (ISVs)?

Can most programmers leverage specialized
hardware - portably, productively, efficiently, and
correctly?

 And have their software automatically take
advantage of advances in specialized hardware?

51

Berkeley Bet: Pattern-specific high-level programs
can be automatically and dynamically specialized

to pattern-specific hardware

BERKELEY PAR LAB

Reasons for Hope,
Building on Par Lab

 Pattern-based view of software architecture
provides basis for structuring heterogeneous
software stack

 Programmers already calling out patterns in their
code to use pattern-specific optimizing
specializers

Match specialized hardware to patterns already
called out in programmers code

Which programmers affected by heterogeneity?

52

BERKELEY PAR LAB

Types of Programming
(or “types of programmer”)

Hardware/OS

Efficiency-Level
(MS in CS) C/C++/FORTRAN

assembler

Java/C# Uses hardware/OS
primitives, builds
programming
frameworks (or apps)

Productivity-Level
(Some CS courses)

Python/Ruby/Lua

Scala

Uses programming
frameworks, writes
application
frameworks (or apps)

Haskell/OCamL/F#

Domain-Level
(No formal CS)

Max/MSP, SQL,
CSS/Flash/Silverlight,
Matlab, Excel

Builds app with DSL
and/or by customizing
app framework

Provides hardware
primitives and OS services

Example Languages Example Activities

53 53

BERKELEY PAR LAB

Idea: Pattern-Specific VMs
 For porting SW, can provide pattern-specific virtual

machines (PSVMs) to hide hardware differences
 For each pattern, define new abstract ISA that

encodes operations and data access patterns
 Family of VMs designed together as a coherent whole
 E.g., for DLP, encode loops with independent

iterations
 E.g., for circuits, encode bit-level dataflow graph

 Each HW platform provides JITs/autotuning to map to
available accelerator
 Can map to GPP if no accelerator available, or if

instance of pattern doesn’t fit on accelerator

54

Berkeley Bet: Innovate at pattern level,
not at binary ISA

BERKELEY PAR LAB

Thought Experiment

 If Intel had defined a data-parallel VM plus
effective JIT, maybe could have avoided:
 MMX
 SSE +2,3,4
 AVX
 LNI

Already used by GPU vendors to hide

hardware ISA changes (“PTX”)

55

BERKELEY PAR LAB

Legacy Code and Hetero

 Look for events that indicate translate x86 binary
from running on general purpose “Productivity
Cores” to run on specialized “Efficiency Cores”
 Execute Transcendental instructions
 Execute SSE instructions
 Reads CPUID to decide which version to run
 Instruction Level Parallelism counters too high
 Memory counters indicate bottleneck
 …

56

BERKELEY PAR LAB

Research Questions

How much benefit is available across our
workloads?
 Some codes constrained by memory traffic or

low parallelism
 Are there new programmable architectures that

capture a significant part of space not already
covered?

Managing hardware design cost and support
software development cost (per-accelerator
JIT)?

57

BERKELEY PAR LAB

Summary
 Par Lab Theme: Specialized HW needs Specialized SW
 Power forced Uniprocessor => Multicore,

soon Homogeneous to Heterogeneous Multicore
 Must make ~invisible to most programmers

Multicore Advances help Hurtle to Heterogeneity?
 Pattern based innovations: SW architecture
 Communication-Avoiding Algorithms
 Dynamic Selective Embedded JIT Specialization &

Autotuning
 OS dynamic resource allocation optimization
 Chisel high-level hardware description

58

BERKELEY PAR LAB

Questions?
(FYI: Par Lab References)

 See parlab.eecs.berkeley.edu/publications
 Asanović, K., R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J.

Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, K.
Yelick., "A View of the Parallel Computing Landscape,”
Communications of the ACM, vol. 52, no. 10, October 2009.

 Bird, S., B.Smith, PACORA: Performance-Aware Convex Optimization
for Resource Allocation

 In the 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar),
May 2011.Catanzaro, B., S. Kamil, Y. Lee, K. Asanović, J. Demmel, K.
Keutzer, J. Shalf, K. Yelick, and A. Fox,

 "SEJITS: Getting Productivity and Performance with Selective
Embedded JIT Specialization,” 1st Workshop on Programmable Models
for Emerging Architecture (at the 18th Int’l Conf. on Parallel
Architectures and Compilation Techniques), Raleigh, North Carolina,
November 2009.

 Tan, Z., A. Waterman, S. Bird, H. Cook, K. Asanović, and D. Patterson,
“A Case for FAME: FPGA Architecture Model Execution,” ISCA, 2010. 59

BERKELEY PAR LAB

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Patterns/Motifs

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

Par Lab Research Overview
Easy to w rite correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
or

re
ct

ne
ss

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

D
ia

gn
os

in
g

Po
w

er
/P

er
fo

rm
an

ce

60

BERKELEY PAR LAB

Transition to Multicore

Sequential App
Performance

BERKELEY PAR LAB

62

Needed a Fresh Approach
to Parallelism

 Berkeley researchers from many backgrounds
meeting since Feb. 2005 to discuss parallelism
 Krste Asanović, Eric Brewer, Ras Bodik, Jim Demmel, Kurt Keutzer,

John Kubiatowicz, Dave Patterson, Koushik Sen, Kathy Yelick, …
 Circuit design, computer architecture, massively parallel

computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

 Tried to learn from successes in high-performance computing
(LBNL) and parallel embedded (BWRC)

 Led to “Berkeley View” Tech. Report 12/2006 and
new Parallel Computing Laboratory (“Par Lab”)

 Goal: To enable most programmers to be productive
writing efficient, correct, portable SW for 100+ cores
& scale as cores increase every 2 years (!)

62

BERKELEY PAR LAB

 Past parallel projects often dominated by hardware
architecture:
 This is the one true way to build computers,

software must adapt to this breakthrough!
 E.g., ILLIAC IV, Thinking Machines CM-2, Transputer,

Kendall Square KSR-1, Silicon Graphics Origin 2000 …
 Or sometimes by programming language:
 This is the one true way to write programs,

hardware must adapt to this breakthrough!
 E.g., Id, Backus Functional Language FP, Occam,

Linda, HPF, Chapel, X10, Fortress …
 Applications usually an afterthought

63

Traditional Parallel Research Project

BERKELEY PAR LAB

64

Music Application
(David Wessel, CNMAT@UCB)

New user interfaces
with pressure-sensitive
multi-touch gestural
interfaces

Programmable virtual instrument
and audio processing

120-channel
speaker array

BERKELEY PAR LAB

Pressure-sensitive multitouch array

120-Channel
Spherical

Speaker Array

Music Software Structure

Audio Processing
& Synthesis

Engine

Filter
Plug-in

Oscillator
Bank

Plug-in

Network
Service

Front-end

GUI
Service

Solid
State
Drive

File
Service

Output Input
Audio Processing

End-to-end Deadline

BERKELEY PAR LAB

Health Application: Stroke Treatment
(Tony Keaveny, ME@UCB)

 Stroke treatment time-critical, need
supercomputer performance in hospital

 Goal: 1.5D Fluid-Solid Interaction
analysis of Circle of Willis (3D vessel
geometry + 1D blood flow).

 Based on existing codes for distributed
clusters 66

BERKELEY PAR LAB

67

Parallel Browser
(Ras Bodik)

Readable
Layouts

 Original goal: Desktop-quality
browsing on handhelds (Enabled by
4G networks, better output devices)

 Now: Better development
environment for new mobile-client
applications, merging
characteristics of browsers and
frameworks (Silverlight, Qt, Android)

BERKELEY PAR LAB

RAMP Gold
(Asanović, Patterson)

Rapid accurate simulation of
manycore architectural ideas
using FPGAs
Initial version models 64 cores
of SPARC v8 with shared
memory system on $750 board
Hardware FPU, MMU, boots our
OS and Par Lab stack!
 Cost Performance

(MIPS)
Time per 64 core

simulation

Software
Simulator $2,000 0.1 - 1 250 hours

RAMP Gold $2,000 + $750 50 - 100 1 hour

68

BERKELEY PAR LAB

Heterogeneity from
Manufacturing and Wear

Heterogeneity from process variations at
manufacturing and subsequent wearout
 Replicating same core design, results in different

energy and performance characteristics (max
frequency, energy/op @Vdd/Vt setting) (spatial
process heterogeneity)

 One core will drift (usually get worse) over time as
part wears out (temporal process heterogeneity)

Heterogeneity is the problem here, not a solution
 (Par Lab is NOT going to work on this)

BERKELEY PAR LAB

Computer Science & Apps

Career so far: Done 9 (overlapping) 5-year projects
 X-tree

Reduced Instruction Set Computer (RISC)
Smalltalk on a RISC (SOAR)
Symbolic Processing Using RISCs (SPUR)
Redundant Array of Inexpensive Disks (RAID)
Network of Workstations (NOW)
Intelligent RAM (IRAM)
Recovery Oriented Computing (ROC)
Reliable Adaptive Distributed systems (RAD Lab)

 10th project (Par Lab) is 1st project with real apps people
 Its been great – ask what problem is vs. pretend to know
 So new Algorithms Machines People (AMP) Lab does too

 Why? 1st 50 years of CS Research solve our own problems?
Now CS is ready to help others?

70

BERKELEY PAR LAB

No Yes

Yes

No

Pure Basic
Research

(Bohr)

Pure Applied
Research
(Edison)

Research is inspired by:
 Consideration of use?

Quest for
Fundamental
Understanding?

Adapted from Pasteur’s Quadrant: Basic Science and Technological Innovation, Donald E. Stokes 1997
(This slide from “Engineering Education and the Challenges of the 21st Century,” Charles Vest, 9/22/09)

Use-inspired
Basic Research

(Pasteur)

Big Data and Pasteur’s
Quadrant

Attack CS Research
by Helping Real App?

	Steps Towards Heterogeneity and the�UC Berkeley Parallel Computing Lab
	Power is the Problem
	What next?
	Efficiency versus Generality
	Outline
	Par Lab Timeline
	Dominant Application �Platforms
	Par Lab’s original “bets”
	“Post Conceived” Big Ideas
	Communication-Avoiding Algorithms (Demmel, Yelick, Keutzer)
	Types of Programming�(or “types of programmer”)
	How to make parallelism visible?
	 Motif (nee “Dwarf”) Popularity �		(Red Hot  Blue Cool)
	“Our” Pattern Language (OPL-2010)�(Kurt Keutzer, Tim Mattson)
	Mapping Patterns to Hardware
	High-level pattern constrains space of reasonable low-level mappings
	Specializers: Pattern-specific and platform-specific compilers
	Autotuning for Code Generation�(Demmel, Yelick)
	SEJITS: “Selective, Embedded, Just-In Time Specialization” (Fox)�
	Tessellation OS: Space-Time Partitioning �+ 2-Level Scheduling (Kubiatowicz)
	Adaptive Resource Management
	Resource Management using �Convex Optimization (Bird, Smith)
	Chisel: Hardware Design Language�(Asanović, Bachrach)
	Theme: Specialized HW requires Specialized SW
	Theme: Specialized HW requires Specialized SW
	Par Lab Apps
	Vision Acceleration�(Kurt Keutzer)
	Fast Pediatric MRI�(Kurt Keutzer)
	Slide Number 29
	Parallelization of Diarization
	Speaker Diarization in Python
	Results – Specializer Overhead
	Outline
	Earlier Successful Examples:�FPUs, Vector Units
	The Opportunity
	The Opportunity
	Heterogeneity?
	Heterogeneity Research
	Specialization >> Heterogeneity
	Structure of Heterogeneity
	Types of Specialization
	Operating-Point Specialization
	Specialization through Runtime Configuration
	Specialized µArchitectures
	ISA Specialization
	Multiple Different ISAs
	Programmable Logic
	Fixed-Function Accelerators
	End of RISC?
	Specialized Memory and Interconnect too
	Software Challenges
	Reasons for Hope,�Building on Par Lab
	Types of Programming�(or “types of programmer”)
	Idea: Pattern-Specific VMs
	Thought Experiment
	Legacy Code and Hetero
	Research Questions
	Summary
	Questions? �(FYI: Par Lab References)
	Par Lab Research Overview
	Transition to Multicore
	Needed a Fresh Approach �to Parallelism
	Slide Number 63
	Music Application�(David Wessel, CNMAT@UCB)
	Music Software Structure
	Health Application: Stroke Treatment�(Tony Keaveny, ME@UCB)
	Parallel Browser �(Ras Bodik)
	RAMP Gold �(Asanović, Patterson)
	Heterogeneity from Manufacturing and Wear
	Computer Science & Apps
	Big Data and Pasteur’s Quadrant

