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BERKELEY PAR LAB 

Power is the Problem 

Given limited power budget and slowly improving 
transistors, how can we continue increase 
performance enabled by Moore’s Law? 
 “This shift toward increasing parallelism is not a triumphant stride 

forward based on breakthroughs in novel software and 
architectures for parallelism; instead, this plunge into parallelism is 
actually a retreat from even greater challenges that thwart efficient 
silicon implementation of traditional uniprocessor architectures.”* 

 Same motivation for transition from homogenous multicore 
to heterogeneous multicore 

 Lower energy at same performance as interesting as more 
performance? 

 Do multicore advances make heterogeneity feasible? 
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*The Landscape of Parallel Computing Research: A View From Berkeley, Dec 2006 
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What next? 

 Future advancements in energy/op needs more 
than just parallelism 

 Voltage-Frequency scaling of limited benefit in 
future technologies 
 Not much difference between Vdd and Vt 

Move to simpler general-purpose cores is a 
one-time gain 
 In smart phones, cores were already relatively 

simple 
More transistors per die than we can power at 

the same time (“Utilization Wall ”) 
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Efficiency versus Generality 
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Outline 

Why Heterogeneity? 
 

Quick Summary of Some Par Lab Advances 
 

 Berkeley Hunch on Heterogeneity 
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Par Lab Timeline 
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Initial 
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“Berkeley View” 
Tech Report 

Win Intel/Microsoft 
UPCRC Competition 

UPCRC 
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UPCRC 
Phase-II 

You are here 
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geneity? 
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7 

Dominant Application  
Platforms 
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 Laptop/Handheld (“Mobile Client”) 
 Par Lab focuses on mobile clients 

 Data Center or Cloud (“Cloud”) 
 RAD Lab/AMP Lab focuses on Cloud 

 Both together (“Client+Cloud”) 
 ParLab-AMPLab collaborations 
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Par Lab’s original “bets” 

Let compelling applications drive research 
agenda 

Software platform: data center + mobile client 
Identify common programming patterns 
Productivity versus efficiency programmers 
Autotuning and software synthesis 
Build-in correctness + power/performance diagnostics 
OS/Architecture support applications, provide flexible 

primitives not pre-packaged solutions 
FPGA simulation of new parallel architectures: RAMP 
Co-located integrated collaborative center 

Above all, no preconceived big idea  
- see what works driven by application needs. 
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“Post Conceived” Big Ideas 

Communication-Avoiding Algorithms 
 Large speedup of highly-polished algorithms by 

concentrating on data movement vs. FLOPs 
 Structural Patterns for Parallel Composition 
 Good software architecture vs. invent new lang 

 Selective Embedded Just-In-Time Specialization 
(SEJITS) 
 Productivity of Python with Efficiency of C++ 

Higher-level Hardware Description Lang (Chisel) 
 More rapidly explore HW design space 

 Theme: Specialized HW requires Specialized SW 
 9 
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Communication-Avoiding Algorithms 
(Demmel, Yelick, Keutzer) 

 Past algorithms: FLOPs expensive, Moves cheap 
 From architects, numerical analysts interacting, 

learn that now Moves expensive, FLOPs cheap 
New theoretical lower bound of moves to FLOPs 
 Success of theory and practice:  real code now 

achieves lower bound of moves to great results 
 Even Dense Matrix: >10X speedup over Intel MKL 

Multicore Nehalem and >10X speedup over GPU 
libraries for tall-skinny matrices (IPDPS 2011) 

  Widely applicable: all linear algebra, Health 
app… 
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Types of Programming 
(or “types of programmer”) 

Hardware/OS 

Efficiency-Level 
(MS in CS) C/C++/FORTRAN 

assembler 

Java/C# Uses hardware/OS 
primitives, builds 
programming 
frameworks (or apps) 

Productivity-Level 
(Some CS courses) 

Python/Ruby/Lua 

Scala 

Uses programming 
frameworks, writes 
application 
frameworks (or apps) 
 

Haskell/OCamL/F# 

Domain-Level 
(No formal CS) 

Max/MSP, SQL, 
CSS/Flash/Silverlight, 
Matlab, Excel 

Builds app with DSL 
and/or by customizing 
app framework 

Provides hardware 
primitives and OS services 

Example Languages Example Activities 
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How to make parallelism visible? 

 In a new general-purpose parallel language? 
 An oxymoron? 
 Won’t get adopted 
 Most big applications written in >1 language 

 Par Lab is betting on Computational and 
Structural Patterns at all levels of 
programming (Domain thru Efficiency) 
 Patterns provide a good vocabulary for domain experts 
 Also comprehensible to efficiency-level experts or 

hardware architects 
 Lingua franca between the different levels in Par Lab 
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How do compelling apps relate to 12 motifs? 
  

  Motif (nee “Dwarf”) Popularity  
  (Red Hot  Blue Cool) 
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Graph-Algorithms 

Dynamic-Programming 

Dense-Linear-Algebra 

Sparse-Linear-Algebra 

Unstructured-Grids 

Structured-Grids 

Model-View-Controller  

Iterative-Refinement 

Map-Reduce 

Layered-Systems 

Arbitrary-Static-Task-Graph 

Pipe-and-Filter 

Agent-and-Repository 

Process-Control 

Event-Based/Implicit-
Invocation 

Puppeteer  

Graphical-Models 

Finite-State-Machines 

Backtrack-Branch-and-
Bound 

N-Body-Methods 

Circuits 

Spectral-Methods 

Monte-Carlo 

Applications 

Structural Patterns  Computational Patterns 

Task-Parallelism 
Divide and Conquer 

Data-Parallelism 
Pipeline 

Discrete-Event  
Geometric-Decomposition 
Speculation 

SPMD 
Data-Par/index-space 

Fork/Join 
Actors 

Distributed-Array 
Shared-Data 

Shared-Queue 
Shared-map 
Partitioned Graph 

MIMD 
SIMD 

Parallel Execution Patterns 

Concurrent Algorithm Strategy Patterns 

Implementation Strategy Patterns 

Message-Passing 
Collective-Comm. 

  

Thread-Pool 
Task-Graph 

Data structure Program structure 

Point-To-Point-Sync. (mutual exclusion) 
collective sync. (barrier) 

  

Loop-Par. 
Task-Queue 

Transactions 

Thread creation/destruction 
Process creation/destruction 
 

Concurrency Foundation constructs (not expressed as patterns) 

“Our” Pattern Language (OPL-2010) 
(Kurt Keutzer, Tim Mattson) 

A = M x V 

Refine Towards 
Implementation 
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Mapping Patterns to Hardware 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Multicore GPU “Cloud” 

Only a few types of hardware platform 

15 
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High-level pattern constrains space 
of reasonable low-level mappings 

(Insert latest OPL chart showing path) 

16 
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Specializers: Pattern-specific and 
platform-specific compilers 

Multicore GPU “Cloud” 

App 1 App 2 App 3 

Dense Sparse Graph Trav. 

Allow maximum efficiency and expressibility in 
specializers by avoiding mandatory intermediary layers 

17 

aka. “Stovepipes” 

(Note: Potentially good match to heterogeneity too) 



BERKELEY PAR LAB 

18 

Autotuning for Code Generation 
(Demmel, Yelick) 

Search space for 
block sizes  
(dense matrix): 
• Axes are block                                 
 dimensions 
• Temperature is                    
 speed 

 Problem: generating optimized code is like searching for 
needle in haystack; use computers rather than humans 
 
 
 
 
 

 
 

 
 

Auto-tuning 

Auto- 
parallelization 

serial 
reference 

OpenMP 
Comparison 

Auto-NUMA 

 Auto-tuners approach: program 
generates optimized code and 
data structures for a “motif” 
(~kernel) mapped to some 
instance of a family of 
architectures (e.g., x86 multicore) 

 Use empirical measurement to 
select best performing 

 ParLab autotuners for stencils, 
sparse matrices, particle/mesh 

 ML to reduce search space? 
 (Note: Good for Heterogeneity?) 
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SEJITS: “Selective, Embedded, 
Just-In Time Specialization” (Fox) 

  SEJITS bridges productivity and efficiency layers through 
specializers embedded in modern high-level productivity 
language (Python, Ruby) 
 Embedded “specializers” use language facilities to map 

high-level pattern to efficient low-level code (at run time, 
install time, or development time) 

 Specializers can incorporate/package autotuners 
Two ParLab SEJITS projects: 
 Copperhead: Data-parallel subset of Python targeting GPUs  
 Asp: “Asp is SEJITS in Python” general specializer 

framework 
 Provide functionality common across different specializers 

 (Note: SEJITS helpful for Heterogeneity too?) 
 19 
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Tessellation OS: Space-Time Partitioning  
+ 2-Level Scheduling (Kubiatowicz) 

1st level: OS determines 
coarse-grain allocation of 
resources to jobs over space 
and time 

2nd level: Application schedules 
component tasks onto 
available “harts” (hardware 
thread contexts) using Lithe 

Time 
Sp

ac
e 

2nd-level 
Scheduling 

Address Space 
A 

Address Space 
B Task 

Tessellation Kernel 
(Partition Support) 

CPU 
L1 

L2 
Bank 

DRAM 

DRAM & I/O Interconnect 

L1 Interconnect 

CPU 
L1 

L2 
Bank 

DRAM 

CPU 
L1 

L2 
Bank 

DRAM 

CPU 
L1 

L2 
Bank 

DRAM 

CPU 
L1 

L2 
Bank 

DRAM 

CPU 
L1 

L2 
Bank 

DRAM 
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Adaptive Resource 
Management 

Resource allocation is about 
adapt/model/observe loop 

 Pacora: using convex optimization as an instance 
to adapt to changing circumstances 

 Each process receives a vector of basic 
resources dedicated to it 
 fractions of cores, cache slices, memory pages, BW 

 Allocate minimum for QoS requirements 
 Allocate remaining to meet system-level objective 
 best performance, lowest energy, best user experience 
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Resource Management using  
Convex Optimization (Bird, Smith) 

 La = RUa(r(0,a), r(1,a), …, r(n-1,a)) La
 

Pa(La) 

Continuously  
Minimize 

(subject to restrictions 
on the total amount of 

resources) 

 Lb = RUb(r(0,b), r(1,b), …, r(n-1,b)) 
 Lb

 

Pb(Lb) 

Penalty Function 
Reflects the app’s 

importance 

Convex Surface 
Performance Metric (L),  e.g., latency 

Resource Utility Function 
Performance as function of 

resources 

QoS Req. 

 (Note: Dynamic Resource Management 
Optimization needed for Heterogeneity too) 
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Chisel: Hardware Design Language 
(Asanović, Bachrach) 

Chisel (Constructing Hardware in a  Scala 
Embedded Language) under active development 
 Generate C simulator + FPGA emulation + 

ASIC synthesis from one RTL description 
 Supports higher-level libraries 

Chisel compiles C-simulation of RTL RISC-V 
processor design in 12 seconds, runs at 4.5MHz 
on 3.2GHz Nehalem 
 FPGA tools take >1 hour to map same 

design, runs at 33MHz on FPGA. 
(Note: Helps for Heterogeneous HW too) 

23 
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Theme: Specialized HW 
requires Specialized SW 

 Patterns specialize general-purpose 
programming by giving programming constructs 
that are specialized for the 12 patterns 

 Programmer composes functionality at high-
level using productivity language 

 Specializers are tools that specialize the generic 
compiler for each of the 12 patterns 
 A stovepipe specializes the general-purpose 

language+compiler combination into a  
pattern+specializer combination 

 System composes resource usage using 2-level 
scheduling: Tessellation OS + Lithe at user-level 
 

24 
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Theme: Specialized HW 
requires Specialized SW 

25 

High-Level 
Description 

Output Name of Tool 

Software in Our 
Pattern Language 
(OPL) 

Software Architecture 
using Structural 
Patterns in 
ASP/Copperhead 

ASP/Copperhead 
Compiler  
(DSLs embedded in 
Python) 

Hardware in Berkeley 
Hardware Pattern 
Language (BHPL) 

C++ simulator, FPGA 
bits, Synthesizable 
Verilog 

Chisel Compiler (DSL 
embedded in Scala) 

MUD/Ale programs  Parallel Layout Engine 
 

MUD/Ale compiler 

Berkeley Bet: Pattern-specific high-level programs 
can be automatically and dynamically  specialized 
to pattern-specific hardware  
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Par Lab Apps 
What are the compelling future workloads? 

oNeed apps of future vs. legacy to drive agenda 
o Improve research even if not the real killer apps 

Music: 3D Enhancer, Hearing Aid, Novel UI 
 Parallel Browser: Layout, Scripting Language 
Computer Vision: Segment-Based Object 

Recognition, Poselet-Based Human Detection  
Health: MRI Reconstruction, Stroke Simulation  
 Speech: Automatic Meeting Diary 

 

26 



BERKELEY PAR LAB 

Vision Acceleration 
(Kurt Keutzer)  

 Parallelizing Computer Vision  
(image segmentation) 

 Problem: Malik’s highest quality algorithm  
was 5.5 minutes / image on new PC  

  Good SW architecture + talk within Par Lab 
 on to use new algorithms, data structures 
 Current result: 1.8 seconds / image on manycore 

  ~ 150X speedup  
  Factor of 10 quantitative change is a qualitative change 

 Enabled propagation of best in class algorithm 

27 
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Fast Pediatric MRI 
(Kurt Keutzer)  

28 

 Pediatric MRI is difficult 
 Children cannot keep still or hold breath 
 Low tolerance for long exams 
 Must put children under anesthesia:  

risky & costly 

 Need techniques to accelerate MRI  
acquisition (sample & multiple sensors) 

 Reconstruction must also be fast, or time 
saved in acquisition is lost in compute   

  Current reconstruction time: 2 hours  
  Non-starter for clinical use 
 Mark Murphy (Par Lab) reconstruction: 1 minute on manycore 
 Fast enough for radiologist to make critical decisions 
 Dr. Shreyas Vasanawala (Lucille Packard Children's     
  Hospital) put into use 2010 for further clinical study 
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BERKELEY PAR LAB 

Speech: Meeting Diarist 
(Nelson Morgan, Gerald Friedland, ICSI/UCB) 

 Laptops/ Handhelds at meeting coordinate to create speaker 
identified, partially transcribed text diary of meeting 

Won 
ACM 
Multimedia 
Grand 
Challenge 
2009 
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Parallelization of Diarization 
 Five versions (so far): 
1. Initial code (2006): 0.333 x realtime  

(i.e., 1 hour audio = 3 hours processing) 
2. Serially optimized (2008): 1.5 x realtime 
3. Parlab retreat summer 2010: Multicore+GPU 

parallelization: 14.3 x realtime 
4. Parlab retreat winter 2011: GPU-only 

parallelization 250 x realtime  
(i.e., 1 hour audio = 14.4 sec processing) 
-> Offline = online! 

5. Parlab retreat June 2011: SEJITized! [1] 
 [1] H. Cook, E. Gonina, S. Kamil, G. Friedland, D. Patterson, A. Fox. CUDA-level Performance with  Python-

level Productivity for Gaussian Mixture Model Applications. USENIX HotPar Workshop, 2011.  
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Speaker Diarization in Python 

Python: 45 LOC C 

….. 

15x LOC 
reduction 
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Results – Specializer Overhead 

 15x reduction in lines of code (Python vs. 
C/Cuda) 

 Python AHC code is within 1.25x of pure C/CUDA 
implementation performance  
 C/CUDA – 250x realtime on GPU 
 SEJITized AHC – 200x realtime on GPU 

 Time lost in: 
 Data copying overhead from CPU to GPU 
 Outer loop and GMM creation in Python  
 GMM scoring in Python 

 Initial retarget to Cilk++ – ~ 100x realtime on 
Nehalem Multicore 
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Outline 

Why Heterogeneity? 
 

Quick Summary of Some Par Lab Advances 
 

 Berkeley Hunch on Heterogeneity 

33 
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Earlier Successful Examples: 
FPUs, Vector Units 

 FPUs are specialized hardware 
 Only useful for floating-point code 
 Easy for programmers to use because 

already had programming model 
 Needed some tuning to use effectively 

 Vector units are specialized hardware 
 Only useful for data-parallel code 
 Easy for programmers to use, already had 

loop nests in application code 
 Needed some tuning to use effectively, but 

had compiler feedback 
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The Opportunity 

35 

 Intel researchers picked 14 throughput oriented 
kernels to benchmark multicore vs. GPU 
 Lee et al “Debunking the 100X GPU vs. CPU myth: 

an evaluation of throughput computing on CPU and 
GPU,” ISCA June 2010. 

Collision Detection Application ran 15.2X faster 
on NVIDIA GPU vs. Intel Nehalem due to 

1. GPU Gather-Scatter addressing 
2. More GPU hardware for transcendental 

functions 
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The Opportunity 

 Example of H.264 video decoder [Hameed et al, ISCA 2010] 
 Highly tuned software H.264 decoder vs. fixed-function ASIC 
 Normalized to 130nm technology 

36 

Area 
(mm2) 

Frames/
Second 

Joules/F
rame 

Pentium-4 (720x480) 122 30 0.742 

Pentium-4 (1280x720) 122 11 2.023 

ASIC (1280x720) 8 30 0.004 

 45X throughput/area advantage 
 (3x frame rate, 15x less area) 

 500X energy/task advantage 
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Heterogeneity? 

Much agreement that heterogeneity comes next 
 But many different views on what heterogeneity 

means 

37 
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Heterogeneity Research 

 Large design space 
 Lots of earlier work 
 many failures (e.g., NeXT DSP, IBM Cell, 

reconfigurable computing) 
 few successes (e.g., GP-GPU) 

Used in niche applications now, but looks 
inevitable for widespread hardware adoption 

How can software keep up? 
Much confusion in industry 

 
 Sound familiar? => Berkeley View on … 

38 
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Specialization >> Heterogeneity 
Do not need heterogeneity to benefit from 

specialization 
Heterogeneity is one way to deliver specialization 
 Alternative approaches: 
 Homogeneous cores with wide variety of 

coprocessors/extended instruction sets 
 Homogeneous reconfigurable cores 

Can use all of the above in one system 
 

Research question: When does core heterogeneity 
make sense versus richer homogeneous cores? 

39 
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Berkeley Bet: Focus on problem on one die 

Structure of Heterogeneity 

How are heterogeneous components arranged? 
 Temporal heterogeneity 
 One core changes over time (voltage, frequency, runtime 

configurable) 
 Spatial heterogeneity 
 Hetero. computers in datacenter (Niagara + Sandy Bridge) 
 Hetero. nodes in single address space (Cray XT6 nodes) 
 Hetero. nodes on one motherboard (CPU + discrete GPU) 
 Hetero. nodes on one chip (SoC CPU+DSP+GPU) 
 Hetero. coprocessors (Vector Units, Conservation Cores) 
 Hetero. functional units (AES instructions) 

40 
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Types of Specialization 

Less specialized 
 Same core design, different VF operating points 
 Same core design, runtime configurable 

components 
 Same ISA, different µarchitectures 
 Variants of same ISA (subsets, different extensions) 
Completely different ISAs 
 Programmable logic (no ISA) 
 Fixed-function accelerators (no programming) 
More specialized 
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Berkeley Bet: Useful tool, can be used with any 
architecture to trade performance and energy/op, 
but benefit decreasing with shrinking transistors 

Operating-Point Specialization 

One core operates at different Voltage/Frequency 
over time (temporal specialization) 

Multiple cores experience different 
Voltage/Frequency at same time (spatial 
specialization) 

Where to manage? 
 Purely in hardware power management unit (PMU)? 
 In OS? 
 With application help? 
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Specialization through Runtime 
Configuration 

One ISA, one microarch, but provide runtime configurable 
components 

 Issue width 
 Reduce active issue width to match ILP 

 Cache capacity 
 activate fewer ways if small working set 
 can also reduce number of sets 

 Turn attached units on and off 
 Floating-point units 
 SIMD engines 
 Attached coprocessors 

 Prefetchers, how aggressive, what patterns to prefetch 
 Multithreading, number of active threads 
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Specialized µArchitectures 

One ISA, different µarchitectures 
“Fat” out-of-order vs. “Thin” in-order 
Lightly threaded (1-2) vs. heavily threaded 

(4-128) 
Wide SIMD (256+bits) vs. Narrow SIMD 

(<= 64bits) 
Few pipestages (latency critical) vs. many 

pipestages (throughput-centric) 
Note: some ISAs better than others to get 

large dynamic range 
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ISA Specialization 

 ISA extensions 
 E.g., crypto operations (+instructions) 

Slave units 
 E.g., vector units (+state, + instructions) 

Autonomous Coprocessors 
 E.g. conservation cores (+state, +instructions, 

+ control) 
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Berkeley Bet: Where there is an ISA, can usually 
use same base ISA, but ISA not where action is  

Multiple Different ISAs 

CPU vs. GPU vs. DSP vs. … 
 Implies heterogeneous cores 
Probably different programming models 
Any technical reason this is needed 

(above µarch specialization or different 
ISA extensions) or just business/IP ? 

46 
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Programmable Logic 

 FPGAs 
 Programmable logic coprocessors 
 GARP, Stretch, Convey 

 
 Successful at accelerating some kinds of 

compute in niche areas 
 

 Programming productivity has been a challenge. 

47 
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Fixed-Function Accelerators 

Avoid instruction stream overhead by 
building fixed-function hardware 
 E.g., crypto engine 

Not programmable, but maybe 
parameterizable 

Very high efficiency for one kernel 
Software accesses through API calls 

48 

Berkeley Bet: Important component of all future 
systems, but not a focus of our research effort 
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End of RISC? 

If have 10 specialized cores 
each aimed at 10% of 
workload, then ISAs likely to 
grow? 

49 
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Berkeley Bet: At least as important as 
specialized cores 

Specialized Memory and 
Interconnect too 

Coherence protocols 
Software-managed memory 
Synchronization primitives 
On-the-fly compression/decompression 
Easier to make configurable, since 

switching and translation/virtualization 
already part of the design 

50 
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Software Challenges 

Can the benefit of hardware specialization be 
widely obtained for third-party application 
developers (ISVs)? 

Can most programmers leverage specialized 
hardware - portably, productively, efficiently, and 
correctly? 

 And have their software automatically take 
advantage of advances in specialized hardware?  

51 

Berkeley Bet: Pattern-specific high-level programs 
can be automatically and dynamically  specialized 

to pattern-specific hardware  
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Reasons for Hope, 
Building on Par Lab 

 Pattern-based view of software architecture 
provides basis for structuring heterogeneous 
software stack 

 Programmers already calling out patterns in their 
code to use pattern-specific optimizing 
specializers 

Match specialized hardware to patterns already 
called out in programmers code 

Which programmers affected by heterogeneity? 

52 
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Types of Programming 
(or “types of programmer”) 

Hardware/OS 

Efficiency-Level 
(MS in CS) C/C++/FORTRAN 

assembler 

Java/C# Uses hardware/OS 
primitives, builds 
programming 
frameworks (or apps) 

Productivity-Level 
(Some CS courses) 

Python/Ruby/Lua 

Scala 

Uses programming 
frameworks, writes 
application 
frameworks (or apps) 
 

Haskell/OCamL/F# 

Domain-Level 
(No formal CS) 

Max/MSP, SQL, 
CSS/Flash/Silverlight, 
Matlab, Excel 

Builds app with DSL 
and/or by customizing 
app framework 

Provides hardware 
primitives and OS services 

Example Languages Example Activities 

53 53 
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Idea: Pattern-Specific VMs 
 For porting SW, can provide pattern-specific virtual 

machines (PSVMs) to hide hardware differences 
 For each pattern, define new abstract ISA that 

encodes operations and data access patterns 
 Family of VMs designed together as a coherent whole 
 E.g., for DLP, encode loops with independent 

iterations 
 E.g., for circuits, encode bit-level dataflow graph 

 Each HW platform provides JITs/autotuning to map to 
available accelerator 
 Can map to GPP if no accelerator available, or if 

instance of pattern doesn’t fit on accelerator 
 

54 

Berkeley Bet: Innovate at pattern level,  
not at binary ISA 
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Thought Experiment 

 If Intel had defined a data-parallel VM plus 
effective JIT, maybe could have avoided: 
 MMX 
 SSE +2,3,4 
 AVX 
 LNI 

 
Already used by GPU vendors to hide 

hardware ISA changes (“PTX”) 

55 
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Legacy Code and Hetero 

 Look for events that indicate translate x86 binary 
from running on general purpose “Productivity 
Cores” to run on specialized “Efficiency Cores” 
 Execute Transcendental instructions 
 Execute SSE instructions 
 Reads CPUID to decide which version to run 
 Instruction Level Parallelism counters too high 
 Memory counters indicate bottleneck 
 … 
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Research Questions 

How much benefit is available across our 
workloads? 
 Some codes constrained by memory traffic or 

low parallelism 
 Are there new programmable architectures that 

capture a significant part of space not already 
covered? 

Managing hardware design cost and support 
software development cost (per-accelerator 
JIT)? 
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Summary 
 Par Lab Theme: Specialized HW needs Specialized SW 
 Power forced Uniprocessor => Multicore,  

soon Homogeneous to Heterogeneous Multicore 
 Must make ~invisible to most programmers 

Multicore Advances help Hurtle to Heterogeneity? 
 Pattern based innovations: SW architecture 
 Communication-Avoiding Algorithms 
 Dynamic Selective Embedded JIT Specialization & 

Autotuning 
 OS dynamic resource allocation optimization 
 Chisel high-level hardware description 
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Questions?  
(FYI: Par Lab References) 

 See parlab.eecs.berkeley.edu/publications 
 Asanović, K., R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. 

Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, K. 
Yelick., "A View of the Parallel Computing Landscape,” 
Communications of the ACM, vol. 52, no. 10, October 2009. 

 Bird, S., B.Smith, PACORA: Performance-Aware Convex Optimization 
for Resource Allocation 

 In the 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar), 
May 2011.Catanzaro, B., S. Kamil, Y. Lee, K. Asanović, J. Demmel, K. 
Keutzer, J. Shalf, K. Yelick, and A. Fox,  

 "SEJITS: Getting Productivity and Performance with Selective 
Embedded JIT Specialization,” 1st Workshop on Programmable Models 
for Emerging Architecture (at the 18th Int’l Conf. on Parallel 
Architectures and Compilation Techniques), Raleigh, North Carolina, 
November 2009. 

 Tan, Z., A. Waterman, S. Bird, H. Cook, K. Asanović, and D.  Patterson,  
“A Case for FAME: FPGA Architecture Model Execution,” ISCA, 2010.  59 
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Transition to Multicore 

Sequential App 
Performance 
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62 

Needed a Fresh Approach  
to Parallelism 

 Berkeley researchers from many backgrounds 
meeting since Feb. 2005 to discuss parallelism 
 Krste Asanović, Eric Brewer, Ras Bodik, Jim Demmel, Kurt Keutzer, 

John Kubiatowicz, Dave Patterson, Koushik Sen, Kathy Yelick, … 
 Circuit design, computer architecture, massively parallel 

computing, computer-aided design, embedded hardware  
and software, programming languages, compilers,  
scientific programming, and numerical analysis 

 Tried to learn from successes in high-performance computing 
(LBNL) and parallel embedded (BWRC)  

 Led to “Berkeley View” Tech. Report 12/2006 and 
new Parallel Computing Laboratory (“Par Lab”) 

 Goal: To enable most programmers to be productive 
writing efficient, correct, portable SW for 100+ cores 
& scale as cores increase every 2 years (!) 
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  Past parallel projects often dominated by hardware 
architecture: 
  This is the one true way to build computers, 

software must adapt to this breakthrough! 
 E.g., ILLIAC IV, Thinking Machines CM-2, Transputer,  

Kendall Square KSR-1, Silicon Graphics Origin 2000 … 
  Or sometimes by programming language: 
  This is the one true way to write programs, 

hardware must adapt to this breakthrough! 
 E.g., Id, Backus Functional Language FP, Occam, 

Linda, HPF, Chapel, X10, Fortress … 
  Applications usually an afterthought 

63 

Traditional Parallel Research Project 



BERKELEY PAR LAB 

64 

Music Application 
(David Wessel, CNMAT@UCB) 

New user interfaces 
with pressure-sensitive 
multi-touch gestural 
interfaces 

Programmable virtual instrument 
and audio processing 

120-channel 
speaker array 
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Pressure-sensitive multitouch array 

120-Channel 
Spherical 

Speaker Array 

Music Software Structure 

Audio Processing 
& Synthesis 

Engine 

Filter 
Plug-in 

Oscillator 
Bank 

Plug-in 

Network 
Service 

Front-end 
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Health Application: Stroke Treatment 
(Tony Keaveny, ME@UCB) 

 Stroke treatment time-critical, need 
supercomputer performance in hospital 

 Goal: 1.5D Fluid-Solid Interaction 
analysis of Circle of Willis (3D vessel 
geometry + 1D blood flow). 

 Based on existing codes for distributed 
clusters 66 
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Parallel Browser  
(Ras Bodik) 

Readable 
Layouts 

 Original goal: Desktop-quality 
browsing on handhelds (Enabled by 
4G networks, better output devices) 

 Now: Better development 
environment for new mobile-client 
applications, merging 
characteristics of browsers and 
frameworks (Silverlight, Qt, Android) 
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RAMP Gold  
(Asanović, Patterson) 

Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs 
Initial version models 64 cores  
of SPARC v8 with shared  
memory system on $750 board 
Hardware FPU, MMU, boots our 
OS and Par Lab stack! 
 Cost Performance 

(MIPS) 
Time per 64 core 

simulation 

Software 
Simulator $2,000 0.1 - 1 250 hours 

RAMP Gold $2,000 + $750 50 - 100 1 hour    
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Heterogeneity from 
Manufacturing and Wear 

Heterogeneity from process variations at 
manufacturing and subsequent wearout 
 Replicating same core design, results in different 

energy and performance characteristics (max 
frequency, energy/op @Vdd/Vt setting)  (spatial 
process heterogeneity) 

 One core will drift (usually get worse) over time as 
part wears out (temporal process heterogeneity) 
 

Heterogeneity is the problem here, not a solution 
 (Par Lab is NOT going to work on this) 
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Computer Science & Apps 

Career so far: Done 9 (overlapping) 5-year projects 
 X-tree  

Reduced Instruction Set Computer (RISC)  
Smalltalk on a RISC (SOAR)  
Symbolic Processing Using RISCs (SPUR) 
Redundant Array of Inexpensive Disks (RAID)  
Network of Workstations (NOW) 
Intelligent RAM (IRAM) 
Recovery Oriented Computing (ROC)  
Reliable Adaptive Distributed systems (RAD Lab) 

 10th project (Par Lab) is 1st project with real apps people 
 Its been great – ask what problem is vs. pretend to know 
 So new Algorithms Machines People (AMP) Lab does too 

 Why? 1st 50 years of CS Research solve our own problems? 
Now CS is ready to help others? 

 
70 



BERKELEY PAR LAB 

No Yes 

Yes 

No 

Pure Basic 
Research 

(Bohr) 

Pure Applied 
Research 
(Edison) 

Research is inspired by: 
    Consideration of use? 

Quest for 
Fundamental 
Understanding? 

Adapted from Pasteur’s Quadrant: Basic Science and Technological Innovation, Donald E. Stokes 1997 
(This slide from “Engineering Education and the Challenges of the 21st Century,” Charles Vest, 9/22/09) 

Use-inspired 
Basic Research 

(Pasteur) 

Big Data and Pasteur’s 
Quadrant 

Attack CS Research  
by Helping Real App? 
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